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ABSTRACT
This paper describes the gesture generation system developed by
Nectec team for GENEA (generation and evaluation of non-verbal
behaviour for embodied agents) challenge 2020. To develop the
proposed system, this challenge provides the common training
dataset of speech (audio and its transcription) and 3D full-body
motion capture in the biovision hierarchical (BVH) format, namely
the Trinity speech gesture dataset.

Our proposed system consists of pre-processing data and gesture
modeling. In terms of data pre-processing, the cleaning data and
preparation process of the input (audio and text) and output (gesture
motion) features were proposed. For modeling gestures, an encoder-
encoder bidirectional LSTM architecture was used to build a gesture
model from both acoustic speech and textual information.

To evaluate the proposed system, the held-out dataset of audio
and its transcription from the challenge were used to generate
the gesture motion, specifically in the body’s upper part. Then,
the submitted results from all teams and a baseline system were
evaluated using a crowdsourced system. The subjective evaluation
results show a fair rating result in terms of both appropriateness
and human-likeness.
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1 INTRODUCTION
We have all heard of these two phrases; ‘a picture is worth a thou-
sand words’ and ‘action speaks louder than words’. With human
communication, verbal and non-verbal are two channels to con-
vey the message in our daily lives. If we compare the benefits of a
picture and action with human communication, non-verbal com-
munication must help us quickly understand the message we want
to communicate. Many studies have been reported that around
70-93% of communication is non-verbal such as body movements,
head movements, hand gestures, facial expression and vocal tone
[8, 9]. For example, lectures can use nodding heads signal to indi-
cate students’ understanding. In co-speech gestures, we always use
hand gestures linking to the words we speak, such as showing the
number while speaking that number. In terms of the virtual world,
Virtual humans or virtual robots are becoming popular. Hence, it is
important to teach them acting like humans, for example, making
virtual humans talking with gestures.

In terms of approach, gesture synthesis can be broadly divided
into text-driven and audio-driven. Both approaches aim to synthe-
sise gesture speech motions (representing by a sequence of param-
eters). The main difference is a given input. A sequence of text
is an input for a text-driven approach, while a speech input is an
input for a audio-driven approach. With the text-driven approach,
the given text has not been used directly as raw text input. It has
to be represented with different kinds of features. In the case of
limited-domain systems, a voice command to control robot in the
form of word, for example,Ogata et al. [10] used a one-hot-vector
to represent word index. Then, the combination of these vectors
and parameter bias were used to model the relationship between
sentences and the robot’s motion using recurent neural networks
(RNNs). However, a simple one-hot-vector does not suit in gen-
eral domain systems. One of the reasons is that it is impossible to
collect all English words. Yoon et al. [17] applied the pretrained
word embedding GloVe for representing each word with embedding
vectors [11]. Additionally, the embedding layer with 300 output
dimensions was defined as the first hidden layer of their encoder-
decoder GRU network architecture. Similarly, Kucherenko et al. [6]
used pre-trained word embeddings BERT instead of GloVe. Then,
they also used duration and speech features to predict the gesture
motion using a simple feed-forward network architecture. With
the audio-driven approach, the given speech has not been used
directly as raw speech input. It has to be represented with various
kinds of features. Mel-frequency Cepstrum Coefficients (MFCC),
one of the popular speech feature representations, was employed
by Kucherenko et al. [5]. Moreover, mel-frequency power spec-
trograms were used by Alexanderson et al. [1]. It is interesting to
note that they found that there is no difference between MFCC
and spectrogram features in terms of objective and subjective tests.
Additionally, pitch and intensity were used by Chiu and Marsella
[2], called prosodic features.

In this paper, we used a similar idea of Kucherenko et al. [6] that
they used the combination of textual and audio information to drive
their gesture generation system. The major difference between this
work and Kucherenko et al. [6] is that we applied word embedding
outside the networks and ourmodels learned by an encoder-decoder
bidirectional LSTM neural network architecture. Moreover, we aim
to include more information, including sound form and linguistic
features.

The rest of this paper is organised as follows. Section 2 explains
the full pipeline of the Nectec system. Section 3 presents the results
of comparative subjective tests using a crowdsourced system and
discussions. Finally, the conclusion is given in Section 4.
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Figure 1: Our text and speech to gesture generation system based on an encoder-decoder LSTM architecture.

2 NECTEC GESTURE GENERATION SYSTEM
We propose the gesture generation system, which is based on both
text and speech features. This work extends from an audio-driven
baseline system[5]. When it comes to text features, the sound form
and linguistic features are extracted from given raw text input.
When it comes to speech features, we used the same features as
proposed in Kucherenko et al. [5]. More details can be found in this
Section.

2.1 Data Preparation
Our initial idea, we know that sound form is directly related to hu-
man speech production such as how to pronounce each word and
the duration of each sound. Hence, we believe that this information
could benefit the training process and lead to better performance.
With the GENEA challenge 2020, the Trinity speech gesture dataset
[3] is used as the standard dataset and provides to the participants
for training the gesture models. However, they do not offer phonetic
transcription. They give only 3D full-body motion capture in BVH
format, audio in wave format, and word transcription (or writing
form) in JSON format. Hence, this subsection describes the pro-
cess of getting phoneme labels from the Trinity dataset, including
sentence segmentation and automatic phoneme alignment.

2.1.1 Sentence Segmentation. The total length of the Trinity dataset
is approximately 4 hours and consists of 23 recordings. Noted that
the average length of each recording is about 600 seconds. We ran-
domly found the missing words in the word transcriptions that
originated from repetitions, revisions, and filler words. Addition-
ally, these inaccurate transcription will lead to misalign because

the audio file and transcript text file must be match. To avoid mis-
alignment of the whole recording, this subsection aims to separate
the long motion, audio, and a sequence of words from word tran-
scription into short sentence segments.

We found that splitting a long text in each utterance into phrases
can be done using an ‘alternatives’ tag in JSON files (word tran-
scription). However, the average length in each phrase is still longer
than 30 seconds. Hence, we design to use ‘full stop’ to separate each
long phrase into short sentences. Finally, there are 2,039 sentences
and the average sound length is about 5.79 seconds.

2.1.2 Forced Alignment. The forced alignment aims to automati-
cally find time-stamp of an orthographic transcription in the speech
segment. The orthographic transcription can be based on phones,
diphones, triphones, syllables, and words. In this paper, we focus
on the beginning and ending at word and phone levels using a pro-
nunciation dictionary. There are many aligners toolkit for example
Penn forced aligner1, Prosodylab-aligner2, EasyAlign3, and Mon-
treal forced aligner4. The Montreal forced aligner is used to perform
forced alignment in this paper, which is based on the Kaldi ASR
toolkit[12]. Kaldi is a state-of-the-art toolkit for speech recognition
and uses for many speech-related tasks such as automatic speech
recognition (ASR), speaker verification, and forced alignment.

In data preparation, the Montreal forced aligner requires an
audio file in wave file format, pronunciation dictionary, and the

1https://web.sas.upenn.edu/phonetics-lab/facilities/
2http://prosodylab.org/tools/aligner/
3http://latlcui.unige.ch/phonetique/easyalign.php
4https://montreal-forced-aligner.readthedocs.io/



The Nectec Gesture Generation System
entry to the GENEA Challenge 2020

corresponding transcript. In our case, 2,039 audio files and its word
transcription are available from the previous subsection. However,
the dictionary is not available. Hence, we perform the conversion
of text to phoneme using flite5 (small and fast run-time version of
festival [14]). After that, unique words and a sequence of phonemes
are used to build a pronunciation dictionary. Then, all required data
are used to align with a ‘mfa_train_and_align’ command. Finally,
the output consists of word and phone transcriptions, as shown in
Figure 2. One of the Montreal forced aligner benefits is the aligner
will automatically insert a short pause between words. In this case,
we do not require to insert short pauses into transcriptions like the
traditional HTK toolkit. We also found that there are 114 audio files
that the aligner cannot align some phonemes into speech input.
The incorrect text and phoneme transcription are the main reasons
for failure, which we ignored all of these failure audio files in this
paper.

Figure 2: An example output of words and phonemes align-
ment.

2.2 Input Feature Extraction
This section describes how input features in each frame are repre-
sented, which we extract from acoustic speech and text transcrip-
tion.

2.2.1 Text Features . This section describes how to extract input
features from a given sentence text. It begins with the forced align-
ment module (described in Section 2.1.2) to get where phonemes
start and stop. After that, the linguistic features of phone, syllable,
word, phrase and sentence level were obtained, as shown in Table
1.

Table 1: Linguistic Features

.
Level Features

Frame
Current phoneme
Position of frames in phoneme
Acoustic class

Phoneme Phoneme context
Syllable Position of phonemes in syllable

Word Word embedding
Position of syllables in word

Phrase Position of syllables in phrase
Position of words in phrase

Sentence
Position of syllables in sentence
Position of words in sentence
Position of phrases in sentence

5http://cmuflite.org/

With the frame-level features, current phoneme in each frame
is encoded to 41-D binary features using a one-hot representation.
The value of a one-hot vector is all zero except the phoneme index
set to one. Position of frames in phonemes is encoded to 3-D
binary features based on the index of these three categories (begin,
middle or end). 57 questions related to the English language’s sound
are used to encode to 57-D binary features of Acoustic class. The
questions are taken from an example of context-dependent label
format for HMM-based speech synthesis in the HTS toolkit, for
example, ‘Is the current phoneme consonant?’ or ‘Is the current
phoneme unvoiced fricative?’.

With the phoneme level features, the gesture motions depend
on the behind and ahead articulator, called coarticulatory effects.
Hence, phoneme context are used to give two preceding and
following phonemes as we used ‘quinphone context’. Then, this
feature is represented by 4 x 41 dimensional binary features using
a one-hot representation.

With the word-level features, we intend to use off-the-shelf pre-
trained models in this work. The pre-trained model in Spacy6 is
used to convert word to word vectors called as word embedding
features. There are several Spacy’s pretrained models available
for English language based on language, genre and size of the
word vectors. To simplicity, this paper prefers ‘en_core_web_sm’
pretrained model, a small-sized English model trained on written
web text such as blogs, news and comments. A 96-D numerical
features vector represents this feature.

With the rest features, Thangthai et al. [15] reported that the
sub level position of phoneme, syllable, word and phrase affects the
mouth movements. We believe that these position features (begin,
middle, end) could affect the gesture movement as well. Hence, po-
sition of phonemes in syllable, position of syllables in word,
phrase, sentence, position of words in phrase, sentence and
position of phrase in sentence are included in this paper.

2.2.2 Speech Features. There are connections between gesture and
speech, such as gesture stroke and pitch, vowel onset, stressed syl-
lable, as shown in a review by Wagner et al. [16]. Therefore, we
extract 30 dimensions of acoustic features: 26 Mel-frequency cep-
stral coefficients (MFCCs) and 4 acoustic prosodic features, which
are fundamental frequency (f0), energy, and its first derivatives.
The acoustic features are obtained from a speech segment at a 25-
millisecond window length with 10-millisecond overlapping. Thus
the acoustic features are vectorised at 100 frames per second (fps).
Then we downsample the acoustic features by averaging over 5
frames interval to match the target gesture motion frame-rate at
20 fps.

2.3 Output Feature Extraction
We extract 40-dimensional features from 3D human motion data
using a representation learning method. The 3D human motion
data are presented in the biovision hierarchical (BVH) format. To ex-
tract output features, we follow the steps proposed by Kucherenko
et al. [5] to learn the representation. First, we select 15 joints from
the 3D motion data: Spine, Spine1, Spine2, Spine3, Neck, Neck1,

6https://spacy.io/usage/spacy-101
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Head, RightShoulder, RightArm, RightForeArm, RightHand, Left-
Shoulder, LeftArm, LeftForeArm, and LeftHand. Next, we apply
the exponential map [4] to represent the selected joints. Then, the
Denoising Autoencoder Networks (DAEs) were trained to encode
the exponential map representation. The DAE network consists of
an input layer, an output layer, and 3 fully-connected layers where
the size of the hidden unit per layers is 325, 40, 325, respectively.
The size of input and output vectors of 3D motion features are
45 dimensions (15 joints: 45 3D-coordinates). The motion features
are then encoded-decoded, and the bottle-neck layer, which has
40 dimensions, is used as a representation of 3D motion data. To
simplify, this 40-D representation will be used as the target output
of the proposed system instead of the 45 3D-coordinates.

To trained the representation learning model, the DAEs model
was pre-trained on 50 epochs with a learning rate of 0.001 and the
mini-batch size of 128. The model was then fine-tuned using adam
optimization method to minimize the MSE errors on 20 epochs and
the learning rate 0.0001, with a dropout rate at 0.1. To corrupt the
input data, we add the Gaussian noise to each feature dimension.
Noted that, the original data in each dimension is added by noise
factor (0.01) times the standard deviation of that feature dimension.

To generate the 3D motion from speech, the 40-D vectors pre-
dicted from the system described in Section 2.4 were decoded by the
‘gesture decoder’ part of the DAEs resulting in 45 3D-coordinates.
However, the motion generated from the model may have discon-
tinuity between frames simply called jerk motions. To reduce the
effect of jerky motion outputs, most research papers suggest to
smooth the results. Hence, this paper performed the Savitzky–Golay
filter in intension to avoid discontinuity results [13].

2.4 Encoder-Decoder Bidirectional LSTM-RNN
Architecture

Our network structure is based on encoder-decoder using bidirec-
tional long short term memory (B-LSTM) architecture, as shown in
Figure 1. With the input part, the t frame of audio and text features
is segmented into fixed of time steps length. This paper is set the
number of time steps to 31, which is spanned over 15 frames before
and after the current frame. For simplicity, figure 1 assumes that
the durations in each phoneme are one frame per phoneme, and
the number of time steps is 5. Additionally, the current frame is at
the phone /m/.

The encoder-decoder consists of 3main layers, including encoder,
context vector and decoder. The encoder will summarise the input
features into a context vector, c. Then, the decoder will transform
the context vector, c, to output features. A fully connected layer
is first defined with the encoder layer, which has 512 units with a
rectified linear unit (ReLU) activation function. Batch normalisation
and 50% dropout are also applied to avoid overfitting and speed
up learning between the fully connected and B-LSTM layers. After
that, two B-LSTMs are defined, which has 128 units per layer. After
that, a 128-D context vector is used to decode output features using
128 units of B-LSTM and 40 units of a fully connected layer. A
linear activation function is employed at the output layer. One of
the most common loss function, mean squared error (MSE) is used
to calculate the difference between the predictions and the ground
truth. The Adam optimization algorithm is used to optimise the

models with 0.9 and 0.999 for beta1 and beta2, respectively. The size
of the mini-batch is set to 128, and a learning rate is set to 0.0003.
The maximum number of epochs is set to 300. The model will save
at the end of every epoch if the mean squared error of validation
is lower down. Moreover, the model will stop training if the mean
squared error of validation does not improve more than 15 epochs.

3 EVALUATION RESULTS
The MUSHRA test (MUltiple Stimuli with Hidden Reference and
Anchor) for video was used as an evaluation interface to perform
the subjective tests in the GENEA challenge 2020 [7]. This test asked
participants to watch videos as many times as they required. Then,
participants had to rate 0 to 100 from bad to excellent in specific
questions based on two studies, including ‘human-likeness’ and
‘appropriateness’. 9 systems were evaluated by 125 participants who
passed all attention checks (to avoid scam participants). Where;

N: Natural motion,
M: Mismatched motion,
BA: audio-driven baseline system[5],
BT:Text-driven baseline system[17],
SE: Our system (Nectec System),
S...: Other systems.

3.1 Human-likeness Evaluation
This test aims to measure the quality of the generated gesture
motion with a specific question; ‘How human-like does the gesture
motion appear?’. Participants had to focus only on the generated
motion as the videos have no sound.
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Figure 3: The ratings distribution in the human-likeness
evaluation.

3.2 Appropriateness Evaluation
This test investigates the relationship between generated gesture
motion and acoustic speech with a specific question; ‘How appro-
priate are the gestures for the speech?’. Participants had to focus
on both the generated motion and sound, ignoring motion quality.
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Figure 4: The ratings distribution in the appropriate-
likeness evaluation.

3.3 Results Discussion
Figure 3 and 4 shows that the medians and means ratings of human-
likeness and appropriateness are identified by the red bars and
yellows diamonds. It was not surprising that natural gestures mo-
tion got the highest rating in both experiments. The results show
that participants easily recognised the difference between real and
synthesised motions, as the rating of synthesised gesture motions
is far away from that of the natural motions. It can be seen that
all submitted models are all at a similar level, but they represent
with different distributions. Another interesting result in Figure 4,
the high rating from ‘M’ over the other systems, showed that none
of the generated systems is well enough. A possible explanation
the duration of the testing videos might be too short to spot the
mismatch motion that visualised from ‘M’ system.

We observed that our model, SE, had not good at head move-
ments based on video results. We found that the avatar’s head
movements can interpret that they do not talk with the viewers.
This might be the primary reason why our system has a lower
rating of human-likeness. However, in terms of appropriateness
rating, we have got a good rating result comparing ‘SB, BA, BT and
SA’ systems. This result confirmed that our proposed text features
using phonetic and linguistic features are useful and related to the
audio.

4 CONCLUSION
In this paper, we describe our encoder-decoder LSTM architecture
for generating gesture motions using both acoustic and textual in-
formation entry to the GENEA challenge 2020. Our framework used
only a provided database (the Trinity speech gesture dataset) and off-
the-shelf Spacy’s pre-trained word embeddings (en_core_web_sm).
We used the same features with speech features as proposed in
audio-driven baseline system, ‘BA’. Interestingly, the appropriate-
nees rating of our system is higher than both the ‘BA’ and ‘BT’
baseline system (p>0.01). In terms of text features, we proposed

phonetic and linguistic features. The subjective evaluation results
show a fair rating result in terms of both appropriateness and
human-likeness.
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