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ABSTRACT
This paper describes FineMotion’s gesture generating system entry
for the GENEA Challange 2020. We start by using simple baselines
and expand them by using context and combining both audio and
textual features. Among the participating systems, our entry at-
tained the highest median score in the human-likeness evaluation
and second highest median score in appropriateness.
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1 INTRODUCTION
Gestures are often underrated in human communication. They may
contribute a lot to a speech going as far as to change what is being
said to the opposite: a simple shrug can make audience question the
credibility of the speech. Humans actively use co-speech gestures
to convey their emotions or visualize their attitude [6, 10].

The task of generating conversational motions can be used for
social robots [12], conversational agents, and even automatic an-
imation of virtual characters. Both rule-based and deep learning
approaches have been employed to varying degrees of success. In
this work, we propose several models to solve this problem as well
as analyze what makes movement seem appropriate and indistin-
guishable from humans and which features are essential for such a
task.

The GENEA Challenge was conducted to explore what kind of
models can produce human-like behavior for motion generation.
The challenge organizers shared a 3.5-hour long dataset of audio,
transcripts, and corresponding motions for body movement as well
as several strong baselines and an evaluation phase, consisting of
250 experts.

Our systems were initially built upon baselines[7, 15] provided
by organizers. We made several architectural adjustments, but con-
ceptually the core of our systems was not dissimilar from previous
work. Our main contributions are adding contextual information
and combining both textual and audio information in one model.

Our paper is organized in the following way: section 2 describes
data processing, which is shared between all experiments; section
3 describes our models; section 4 contains the discussion of our re-
sults; and section 5 is for conclusion. Our code is publicly available1
to help other researchers reproduce our systems.

A complete task description can be accessed in [8]. Our team
was labeled SD in the challenge evaluation results, which will be

1https://github.com/FineMotion/GENEA_2020

released later. The dataset used in all experiments is described in
[3].

2 DATA PROCESSING
The challenge organizers provided 23 recordings with an overall
length of 3 hours and 40 minutes for training. Each recording con-
sisted of an audio file with speech recording, text transcripts, and
BVH file with the motion data. The initial motion was captured by
60 frames per second; however the generated motions for evalua-
tion were rendered at 20 frames per second. The motion skeleton
contained 71 joints, but we used only 15 points corresponding to
the upper body without hands and fingers.

We split the dataset for training and validation in the following
way: the first recording Recording_001 was used for validation (12
minutes), while the rest of the recordings were used for training (3
hours 28 minutes total). As the evaluation process is rather long, we
used only 1 minute of Recording_001 for human evaluation, and the
remaining part of the sample was used to calculate mean average
error on joints as a sanity check.

For all our models we used the same audio and motion data
preparation pipeline provided in one of the baselines [7]. For audio
representation we used 26 Mel-frequency cepstral coefficients [2].
We then averaged every five consequent Mel features to align audio
features with motions (so that they have 20 FPS each). We represent
motion data by 3 dimensional axis-angle rotation vectors for 15
joints. Thus each motion frame has 45 float features. This values
are normalized over the mean value on train dataset. All aforemen-
tioned transformations of data result in input audio feature matrices
to have size (N, 26) and output motion matrices to have size (N, 45),
where N represents the number of frames in the sample.

Some of our experiments described further will mention a con-
text window. The context window consists of 61 frames centered
around a certain point in time, represented by a frame. We also use
a "mean pose" calculated from the training dataset to use it as a
starting value in recurrent models.

For paddings we used the MFCCs of silence recording. In text-
based models we also used text features in form of GloVe [11]
embedding for words in context window.

For all proposed models we smoothed generated motions by ap-
plying the Savitzky-Golay filter [13] to them. The length of the filter
window and the order of the polynomial are 9 and 3, respectively.
We did not use any external data.
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3 PROPOSED MODELS
3.1 Sequence to sequence model
Our first described model is a sequence to sequence model [14]
inspired by [15]. The model in the aforementioned paper used
words to generate corresponding motions. The competition dataset
provides audio, motions and words. Three seconds of speech cor-
respond to 60 poses and usually contain less than 10 words. We
have decided to build our system on audio features and use textual
information to further improve the quality of the models. Aside
from difference in density between the two sets of features, speech
obviously conveys more information like emotions, pauses, voice
crackling, which are usually lost in text-to-speech systems.

As motions and audio features are mapped on a one-to-one basis,
our first model is a simple seq2seq [14] consisting of GRU encoder
and decoder over audio and motions. This baseline system is illus-
trated on Figure 1, with the exception of word encoder, which is
described further. The encoder takes several audio features from
frames 𝐴𝑖−𝑘 ...𝐴𝑖 , encodes them into a higher dimensional space
represented by 𝐴𝐸𝑖−𝑘 ..𝐴𝐸𝑖 and passes it to the decoder, which pre-
dicts the followingmotions labeled𝑀𝑖+1 ...𝑀𝑚 . Decoder’s final layer
combines decoder hidden state and encoder-decoder dot-product
attention [9] to make a motion prediction. As the decoder requires
a pose as the first input, we supply it a previously predicted pose
or the "mean pose" if no previous poses are available.

We tried to further improve this model by adding a word en-
coder, which is illustrated in the dotted box in Figure 1. Words are
embedded using GloVe [11] and passed to another GRU. The hidden
state of word-level encoder is not directly passed to the decoder, but
a second encoder-decoder attention vector is calculated, which is
supplied to the final layer of the decoder, to make prediction based
both on audio, previous poses and words. The words are taken from
a 2-second window.

We tuned several hyperparameters and training strategies. As
the authors in [15] we employed continuity loss and variance loss
to make the generated motions more fluid and natural. The addition
of variance loss significantly improved co-speech gesture quality.
We trained model with learning rate of 0.001 using Adam optimizer;
audio encoder was a 2-layered bidirectional GRU with the hidden
dimension of 150 units; word encoder was a single-layered GRU,
both input and output dimensions were set to 100 units; decoder
was a single-layered GRU with hidden dimension of 150 units.
The model was trained for 100 epochs with a batch size of 512,
where each sample contained 10 previous poses and 20 poses for
prediction.

We also explored various combinations of windows sizes for en-
coder and decoder. We did not find larger windows to be beneficial
to the quality of our predictions and we kept the same window
sizes as in the original paper: we use 10 previous frames to predict
the following 20 frames.

Another strategywe tried to employ is teacher forcing [1]: during
training we mixed poses supplied in the decoder. We used true
motions as well as poses generated by the decoder itself. The main
idea behind it is to help the model to explore the error space and
become more robust. In the end we found out that not supplying
real poses at all was the best option and the rest of our models
are using their own predictions during training, just as it would

Figure 1: Scheme of baseline seq2seq model on audio fea-
tures with optional word-level encoder.

happen during inference. This may be attributed to variance loss:
the model was rewarded for making different poses, which likely
resulted in a pretty constant deviation from true poses.

We also do not save hidden state of encoder and decoder between
batches during training. Each training sample is processed individ-
ually without knowledge of previous time period, but during infer-
ence the model always supplies it’s state for the next segment. This
may be the reason behind choppiness in predicted movement, but
we never explored it, as smoothing during postprocessing helped
us to eliminate this shortcoming.

We’d like to state that our evaluation of hyperparameters is
rather subjective: all the changes were judged by a small group of
2-3 people on a one-minute sample from the validation recording.
It is quite possible that we misjudged some of our experiments
because of an unsuitable time sector or a simple human error.

3.2 Contextual encoder
The second model is inspired by [7]. We have decided to keep
sequence to sequence model and enhance it with contextual repre-
sentations. In our basic sequence to sequence encoder each input
corresponds to a single frame.

We decided to represent each frame as a 3-secondwindow around
it, which resulted in 61 frames. We used two additional GRU en-
coders to encode the audio and textual context window as dis-
played on Figure 2. The audio encoder consists of 3 linear layers
with batch normalization to project audio features and one-layer
one-directional GRU. All audio encoder layers have hidden size
150. The textual encoder is bidirectional one-layer GRU over GloVe
embeddings and hidden size of encoder is similar to the embed-
dings size which is 100. The outputs of both context encoders are
concatenated and projected to be passed as inputs to the seq2seq
encoder with hidden dimension of 150 units. The rest of the model
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Figure 2: Scheme of contextual encoder.

is a simple sequence to sequence architecture with attention, which
was described earlier.

We train this model with Adam optimizer with the learning rate
of 0.001 and the batch size of 50. The final model was trained for
the 100 epochs, however the target loss stabilized after 80th epoch.
Furthermore, motions generated after 80th and 100th epochs were
virtually identical.

3.3 Adversarial training
Even a single speaker has a significant variation of his movements
even in extremely similar situations, same phrases and contexts.
However, so far we described only models which tried to recreate
the same movements as the ground truth, even if it was not the
only correct behaviour, but one of the many possible motions. To
try to overcome this problem we used adversarial training (as done,
i.e. in [4, 5]).

The generator model produces motions from audio, while dis-
criminator model tries to classify real and generated motions. The
Generator loss is

𝐿𝐺 = 𝐿𝑏𝑎𝑠𝑒 (𝐺) + 𝜆𝐿𝑎𝑑𝑣 (𝐺, 𝐷), (1)

where 𝐿𝑏𝑎𝑠𝑒 contains whatever non-adversarial components of
generator loss and 𝐿𝑎𝑑𝑣 represents adversarial loss with weight 𝜆.
In all of our experiments we used non-saturating GAN loss.

We tried several discriminator models based on blocks of (1D
convolution, 1D batch normalization, LeakyRelu(0.2)). After series
of that blocks we flatten the outputs of convolutional block and
apply two more linear layers. We varied total number of blocks
from 2 to 6 with at least two of them reducing spatial dimension
(stride > 1).

Unfortunately, the training with adversarial loss was not stable
(especially for relatively high 𝜆 values around 10.0). Sometimes we
got interesting and diverse results (mostly for small 𝜆 values around

0.1), however the quality was still lacking in comparison with our
best model so in the final system adversarial training was not used.

4 RESULTS AND DISCUSSION
The challenge organizers used two human-evaluation metrics for
evaluation:

• Human-likeness - the generated motion should be realistic
for human. The evaluation participants should score the
motion file without audio by this criterion.

• Appropriateness - the generated motion should match the
corresponding audio. So participants score motion with au-
dio.

The challenge organizers also provided the results for baselines,
which we built our systems upon in our submission. This allows us
to find out the importance of our modifications.

The baseline systems from [7] and [15] had 46 and 55 median
score in human likeness and 40 and 38 in appropriateness. Our final
submission scored 60 and 49. By human-likeness it has the highest
median score among the participating systems and baselines. It
also has the second highest score by appropriateness. Although
our system showed strong improvement over baselines, it is still
far behind human generated motions (72 human-likeness and 81
appropriateness). A special sample of mismatched real motion and
real audio was also present at the evaluation. It was not surpassed by
any of the teams. That means that our synthetic generated motions
are significantly less appropriate than random human movement.

To select the best model we compared them on validation data
using human evaluation among the three members of our team. The
seq2seq model with contextual encoder was unanimously chosen
as the best model, however seq2seq with attention over text and
audio was a close second.

We found out that our team was looking for specific sorts of
movements during the motion evaluation: we generally were look-
ing for correspondence between motions and verbal pauses. We
were more inclined to vivid movements, even if they were choppy,
and last but not least - we were always looking for fast and sharp
movements coinciding with loud and aggressive speech patterns.

Our humble human evaluation has come to a conclusion, that the
approach with context encoder helps to make generated motions
smoother, because is uses more information, especially for the
last frames in a sequence, while basic seq2seq heavily relies on
smoothing.

5 CONCLUSION
In our approach we combined text and audio features and thus
were able to outperform text- and audio-only baselines. However,
the lack of a clear movement quality metric did not allow us to
thoughtfully and adequately explore our design choices, thus our
architecture is certainly only suboptimal. Computable metrics serve
only as a sanity check: approaches using GANs or variance loss
could produce a fitting motion, which would be quite different from
the original.

Compared with real data (human gestures) there is a striking
gap in our system’s performance and real motions, meaning that
there is still a lot to be improved.
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We believe that in the future it is worth exploring text and audio
feature fusion more thoughtfully. We also think that generative
models have a lot of potential. Our team also did not explore various
sound preprocessing techniques, which could result in a more high-
dimensional vector input representation, whichwould allowmodels
to extract a more rich set of features.
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